Second Order Asymptotics of Aggregated Log-Elliptical Risk
نویسندگان
چکیده
منابع مشابه
Kernel Asymptotics of Exotic Second-Order Operators
The Navier–Lamé operator of classical elasticity, μ∆v+(λ+μ)∇(∇·v), is the simplest example of a linear differential operator whose second-order terms involve a coupling among the components of a vector-valued function. Similar operators on Riemannian manifolds arise in conformal geometry and in quantum gravity. (In the latter context they have come to be called “nonminimal”, but “exotic” is pro...
متن کامل2 Second - Order Phase Field Asymptotics
We extend Karma and Rappel's improved asymptotic analysis of the phase eld model to diierent diiusivities in solid and liquid. We consider both second-order \classical" asymp-totics, in which the interface thickness is taken much smaller than the capillary length, and the new \isothermal" asymptotics, in which the two lengths are considered comparable. In the rst case, if the phase eld model is...
متن کاملSecond-Order Asymptotics in Covert Communication
We study the firstand second-order asymptotics of covert communication with Pulse-Position Modulation (PPM) over binary-input Discrete Memoryless Channels (DMCs) for three different metrics of covertness. When covertness is measured in terms of the relative entropy between the channel output distributions induced with and without communication, we characterize the exact PPM second-order asympto...
متن کاملSecond Order Asymptotics for Matrix Models
We study several-matrix models and show that when the potential is convex and a small perturbation of the Gaussian potential, the first order correction to the free energy can be expressed as a generating function for the enumeration of maps of genus one. In order to do that, we prove a central limit theorem for traces of words of the weakly interacting random matrices defined by these matrix m...
متن کاملSecond Order Asymptotics for Quantum Hypothesis Testing
In the asymptotic theory of quantum hypothesis testing, the error probability of the first kind jumps sharply from zero to one when the error exponent of the second kind passes by the point of the relative entropy of the two states, in an increasing way. This is well known as the direct part and strong converse of quantum Stein’s lemma. Here we look into the behavior of this sudden change and h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methodology and Computing in Applied Probability
سال: 2013
ISSN: 1387-5841,1573-7713
DOI: 10.1007/s11009-013-9356-5